Derivatives Pricing and Trading in Incomplete Markets

Dennis Yang
ATMIF LLC
dennis.yang@atmif.com

November, 2006
Outline

Describe THE Idea

The Risky Bond Example
Incomplete Market Models

Model:

▶ Abstraction of reality
▶ Simulated option game
▶ No absolute correctness in finance

What are the logical consequences after establishing a belief?
Incomplete Market Models

Model:
- Abstraction of reality
- Simulated option game
- No absolute correctness in finance

What are the logical consequences after establishing a belief?

Incomplete Markets:
Cannot eliminate risks associated with a derivative position.

Causes for Incompleteness:
Transaction costs, Stochastic vloatility, Jumps, Trading contraints, etc.

Reality is much better represented by incomplete markets.
Preference Question

Why is it necessary?

- The final wealth is a random variable.
- Different strategies (e.g. hedging schemes) produce different probability density functions of the final wealth.
- **Must** find a way to rank different strategies.

Example:
Strategy A: a Gaussian with mean 1.0, standard deviation 1.0;
Strategy B: a Gaussian with mean 0.5, standard deviation 0.4.
Which one do you choose?
Utility Function

Standard approach is the expected utility theory

\[E[U] = \int U(w) \rho(w) \, dw \]

Change \(\int \) to \(\sum \) if \(w \) is discrete.

\(U(w) \) is increasing and concave.
Affine transformation freedom of utility functions.
Utility Function

Standard approach is the expected utility theory

\[E[U] = \int U(w)\rho(w) \, dw \]

Change \(\int \) to \(\sum \) if \(w \) is discrete.

\(U(w) \) is increasing and concave.
Affine transformation freedom of utility functions.

Use the negative exponential utility function

\[U(w) = -\frac{1}{\gamma} \exp(-\gamma w) \]

Large risk aversion parameter \(\gamma \) means more risk averse.
\(\gamma \) and position size appear together as a product.

Reason: Memoryless, Solvable
Fair Value

Fair value is the model output price of a derivative contract.
Fair Value

Fair value is the model output price of a derivative contract.

How to use your fair value f:

if $p < f$, you buy;
if $p = f$, you hold;
if $p > f$, you sell;

where p is the market price of the derivative.
Review

The “Aha!” moment is coming up soon.
The “Aha!” moment is coming up soon.

Four ingredients:

- Logic
The “Aha!” moment is coming up soon.

Four ingredients:
- Logic
- Incomplete market model
The “Aha!” moment is coming up soon.

Four ingredients:
- Logic
- Incomplete market model
- Utility function
The “Aha!” moment is coming up soon.

Four ingredients:

- Logic
- Incomplete market model
- Utility function
- Notion of fair value
Aha!

In a local equilibrium when $p = f$.

The equilibrium state is optimal!
In a local equilibrium when $p = f$.

The equilibrium state is optimal!
In a local equilibrium when $p = f$.

The equilibrium state is optimal!

Aha! The link: derivative pricing and portfolio optimization
Aha!

In a local equilibrium when $p = f$.

The equilibrium state is optimal!

Aha! The link: derivative pricing and portfolio optimization

What are the necessary conditions for optimality?

\implies Equations for computing the fair value
New Pricing Principle

Local Equilibrium Principle > Arbitrage Principle
New Pricing Principle

<table>
<thead>
<tr>
<th>Local Equilibrium Principle > Arbitrage Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Incomplete</td>
</tr>
</tbody>
</table>
New Pricing Principle

Local Equilibrium Principle $>$ Arbitrage Principle

Complete
- Local equilibrium pricing
- delta hedging & BS eq.

Incomplete
- unique and correct

Arbitrage pricing
- delta hedging \Rightarrow BS eq.
- a very wide range

Explicit link: Real measure \longrightarrow Pricing measure

Warning: No more freedom to yank a “risk neutral” measure out of thin air, i.e. cannot model “risk neutral” measure directly.
Outline

Describe THE Idea

The Risky Bond Example
Model

- unit face value zero-coupon bond maturing at time T
- probability of default is d
- zero interest rate and other idealized assumptions
- current market price of the illiquid risky bond is p

This is an incomplete market model.

The risky bond is considered as a derivative here.

This simplest financial model goes a long way to explain all the relevant concepts.

Goal: systematic trading decisions based on the model
Portfolio Optimization

The expected utility of the final wealth is

\[E[U] = (1 - d) \ U(w_0 + (1 - p)\hat{n}) + d \ U(w_0 - p\hat{n}) \]

Set the first order derivative w.r.t. \(\hat{n} \) to zero

\[(1 - d)(1 - p) \ U'(w_0 + (1 - p)\hat{n}) = dp \ U'(w_0 - p\hat{n})\]
Portfolio Optimization

The expected utility of the final wealth is

\[E[U] = (1 - d) \ U(w_0 + (1 - p)\hat{n}) + d \ U(w_0 - p\hat{n}) \]

Set the first order derivative w.r.t. \(\hat{n} \) to zero

\[
(1 - d)(1 - p) \ U'(w_0 + (1 - p)\hat{n}) = dp \ U'(w_0 - p\hat{n})
\]

The optimal position is (no \(w_0 \))

\[
\gamma \hat{n} = \ln \left(\frac{(1 - d)(1 - p)}{dp} \right)
\]
Fair Value

Let n be your current position, your fair value of the risky bond is

$$f = \frac{1 - d}{(1 - d) + d \exp(\gamma n)}$$

Inversion:
What market price makes the current position optimal?
Fair Value

Let n be your current position, your fair value of the risky bond is

$$f = \frac{1 - d}{(1 - d) + d \exp(\gamma n)}$$

Inversion:
What market price makes the current position optimal?

Proof:
- if $p < f$, then $\hat{n} > n$, \Rightarrow you buy;
- if $p = f$, then $\hat{n} = n$, \Rightarrow you hold;
- if $p > f$, then $\hat{n} < n$, \Rightarrow you sell.
Fair Value

Let n be your current position, your fair value of the risky bond is

$$f = \frac{1 - d}{(1 - d) + d \exp(\gamma n)}$$

Inversion:
What market price makes the current position optimal?

Proof:

► if $p < f$, then $\hat{n} > n$, \Rightarrow you buy;
► if $p = f$, then $\hat{n} = n$, \Rightarrow you hold;
► if $p > f$, then $\hat{n} < n$, \Rightarrow you sell.

f depends on the model parameter d—no surprise.
f also depends on your risk preference γ and current position n!
Fair Value

Let \(n \) be your current position, your fair value of the risky bond is

\[
f = \frac{1 - d}{(1 - d) + d \exp(\gamma n)}
\]

Inversion:
What market price makes the current position optimal?

Proof:

\begin{itemize}
 \item if \(p < f \), then \(\hat{n} > n \), \(\Rightarrow \) you buy;
 \item if \(p = f \), then \(\hat{n} = n \), \(\Rightarrow \) you hold;
 \item if \(p > f \), then \(\hat{n} < n \), \(\Rightarrow \) you sell.
\end{itemize}

\(f \) depends on the model parameter \(d \)—no surprise. \(f \) also depends on your risk preference \(\gamma \) and current position \(n \)!

The fair value concept is only meaningful when you take the personal rather than the market perspective.
Source of Risk

Incomplete markets \Rightarrow Unhedgable Risks
Source of Risk

Incomplete markets \Rightarrow Unhedgable Risks

Q: What is the source of the risk?
A: Having a position (your position!).

Incompleteness + Risk Aversion \Rightarrow Position Dependency
Source of Risk

Incomplete markets \Rightarrow Unhedgable Risks

Q: What is the source of the risk?
A: Having a position (your position!).

Incompleteness + Risk Aversion \Rightarrow Position Dependency

Current Literature:
Missing Position Dependency $=$ Missing Risks
Source of Risk

Incomplete markets ⇒ Unhedgable Risks

Q: What is the source of the risk?
A: Having a position (your position!).

Incompleteness + Risk Aversion ⇒ Position Dependency

Current Literature:
Missing Position Dependency = Missing Risks

The position effect can offer natural explanations to many real world phenomenons.
How to Trade

Position dependency $f(n) \Rightarrow$ Natural trading strategy

Trading Rule: (do not require gut feelings)
Make post-trade fair value equal the market price

$$f(n + m) = p$$

This is the local equilibrium equation.
How to Trade

Position dependency \(f(n) \Rightarrow \) Natural trading strategy

Trading Rule: (do not require gut feelings)
Make post-trade fair value equal the market price

\[
f(n + m) = p
\]

This is the local equilibrium equation.

The solution is

\[
m = \frac{1}{\gamma} \ln \frac{(1 - d)(1 - p)}{dp} - n = \hat{n} - n
\]

The optimal trading size \(m \) is simply the optimal position \(\hat{n} \) (post-trade) minus the current position \(n \) (pre-trade).
How to Trade

Position dependency $f(n) \Rightarrow$ Natural trading strategy

Trading Rule: (do not require gut feelings)
Make post-trade fair value equal the market price

$$f(n + m) = p$$

This is the local equilibrium equation.

The solution is

$$m = \frac{1}{\gamma} \ln \left(\frac{(1 - d)(1 - p)}{dp} \right) - n = \hat{n} - n$$

The optimal trading size m is simply the optimal position \hat{n} (post-trade) minus the current position n (pre-trade).

Incomplete Market Model + Risk Aversion = How to Trade
Define a curve $q(m) := f(n + m)$

$$q(m) = \frac{1 - d}{(1 - d) + d \exp[\gamma(n + m)]}$$

$d = 0.05, \gamma n = 0.5$
Define a curve $q(m) := f(n + m)$

$$q(m) = \frac{1 - d}{(1 - d) + d \exp[\gamma(n + m)]}$$

$p < f(n) \Rightarrow m > 0$ (demand)

$p > f(n) \Rightarrow m < 0$ (supply)

$d = 0.05, \gamma n = 0.5$
Define a curve $q(m) := f(n + m)$

$$q(m) = \frac{1 - d}{(1 - d) + d \exp[\gamma(n + m)]}$$

$p < f(n) \Rightarrow m > 0 \, (\text{demand})$

$p > f(n) \Rightarrow m < 0 \, (\text{supply})$

large $|p - f(n)| \Rightarrow$ large $|m|$

$d = 0.05, \quad \gamma n = 0.5$
Define a curve \(q(m) := f(n + m) \)

\[
q(m) = \frac{1 - d}{(1 - d) + d \exp[\gamma(n + m)]}
\]

\(p < f(n) \Rightarrow m > 0 \) (demand)

\(p > f(n) \Rightarrow m < 0 \) (supply)

large \(|p - f(n)| \Rightarrow \) large \(|m| \)

downward sloping guarantees equilibrium state

automatic inventory control
Generating Quotes

The personal supply-demand curve is also called quote price curve.
Generating Quotes

The personal supply-demand curve is also called quote price curve.

Let $m_b > 0$ (bid) and $m_a < 0$ (ask)

Making a market: Posting four numbers

$\{q(m_b), |m_b|\} - \{q(m_a), |m_a|\}$, \textit{e.g.}, $\{0.875, 0.5\} - \{0.950, 0.5\}$

$\{\text{bid price, bid size}\} - \{\text{ask price, ask size}\}$
Generating Quotes

The personal supply-demand curve is also called quote price curve.

Let $m_b > 0$ (bid) and $m_a < 0$ (ask)

Making a market: Posting four numbers

\{q(m_b), |m_b|\}—\{q(m_a), |m_a|\}, e.g., \{0.875, 0.5\}—\{0.950, 0.5\}

{bid price, bid size}—{ask price, ask size}

Natural market maker!
Arbitrage Price

Definition for buy and sell arbitrage prices (Why?)

\[a^b := \lim_{m \to +\infty} f(n + m) \]
\[a^s := \lim_{m \to -\infty} f(n + m) \]

\(a^b \) and \(a^s \) are position and preference independent.
Arbitrage Price

Definition for buy and sell arbitrage prices (Why?)

\[a^b := \lim_{m \to +\infty} f(n + m) \]
\[a^s := \lim_{m \to -\infty} f(n + m) \]

\(a^b\) and \(a^s\) are position and preference independent.

Arbitrage prices are not useful in incomplete markets because \((a^b, a^s)\) form a wide range.

For the risky bond, \(a^b = 0\) and \(a^s = 1\).
Certainty Equivalent Profit and Loss (CEPL)

How to measure a trade?

- Realized P&L: a random ex-post quantity
- Gain in expected utility: no natural scale
- **CEPL**: convert expected utility gain into wealth

Trading \(m \) units at \(p \) per bond:

\[
E_1[U] = (1 - d)U(w_0 - pm + n + m) + dU(w_0 - pm)
\]

Taking the lump sum \(\Upsilon \) in lieu of the trade:

\[
E_2[U] = (1 - d)U(w_0 + \Upsilon + n) + dU(w_0 + \Upsilon)
\]

CEPL definition:

\[
\text{Indifferent} \iff E_1[U] = E_2[U]
\]

\[
\Upsilon(m, p) = -\frac{1}{\gamma} \ln d + (1 - d) \exp[-\gamma(m + n)]d + (1 - d) \exp[-\gamma n] - mp
\]
Certainty Equivalent Profit and Loss (CEPL)

How to measure a trade?

- Realized P&L: a random ex-post quantity
- Gain in expected utility: no natural scale
- **CEPL:** convert expected utility gain into wealth

Trading \(m\) units at \(p\) per bond:

\[
E_1[U] = (1 - d) \, U(w_0 - pm + n + m) + d \, U(w_0 - pm)
\]

Taking the lump sum \(\Upsilon\) in lieu of the trade:

\[
E_2[U] = (1 - d) \, U(w_0 + \Upsilon + n) + d \, U(w_0 + \Upsilon)
\]
Certainty Equivalent Profit and Loss (CEPL)

How to measure a trade?

- Realized P&L: a random ex-post quantity
- Gain in expected utility: no natural scale
- **CEPL**: convert expected utility gain into wealth

Trading m units at p per bond:

$$E_1[U] = (1 - d) \ U(w_0 - pm + n + m) + d\ U(w_0 - pm)$$

Taking the lump sum Υ in lieu of the trade:

$$E_2[U] = (1 - d) \ U(w_0 + \Upsilon + n) + d\ U(w_0 + \Upsilon)$$

CEPL definition: Indifferent $\Rightarrow E_1[U] = E_2[U]$

$$\Upsilon(m, p) = -\frac{1}{\gamma} \ln \frac{d + (1 - d) \exp[-\gamma(m + n)]}{d + (1 - d) \exp(-\gamma n)} - mp$$
Dimensionless CEPL Surface $\gamma \Upsilon(m, p)$
CEPL against Trading Price

Sideway view of the surface plot
CEPL against Trading Size

Front view of the surface plot
Portfolio Indifference Price

Indifferent between lump sum h and position n

$$U(w_0 + h) = (1 - d) \ U(w_0 + n) + d \ U(w_0)$$

Explicit formula

$$h(n) = -\frac{1}{\gamma} \ln \left[d + (1 - d) \exp(-\gamma n) \right]$$

Note $n = 0 \Rightarrow h = 0$.
Portfolio Indifference Price

Indifferent between lump sum h and position n

$$U(w_0 + h) = (1 - d) \ U(w_0 + n) + d \ U(w_0)$$

Explicit formula

$$h(n) = -\frac{1}{\gamma} \ln \left[d + (1 - d) \exp(-\gamma n) \right]$$

Note $n = 0 \Rightarrow h = 0$.

The CEPL formula can be rewritten as

$$\Upsilon(m, p) = h(m + n) - h(n) - mp$$

Can be deduced from the notion of indifference.
Tangent Relation

\[f(n) = h'(n) \]

Easy proof mathematically
Tangent Relation

\[f(n) = h'(n) \]

Easy proof mathematically

Two proofs based on financial interpretations:

Proof #1: Infinitesimal trade after establishing equilibrium

\[0 = h(\epsilon + n) - h(n) - \epsilon p \]
Tangent Relation

\[f(n) = h'(n) \]

Easy proof mathematically

Two proofs based on financial interpretations:

Proof #1: Infinitesimal trade after establishing equilibrium

\[0 = h(\epsilon + n) - h(n) - \epsilon p \]

Proof #2: Establishing the optimal position from nothing

\[\Upsilon = h(n) - np \]
Tangent Relation

\[f(n) = h'(n) \]

Easy proof mathematically

Two proofs based on financial interpretations:

Proof #1: Infinitesimal trade after establishing equilibrium

\[0 = h(\epsilon + n) - h(n) - \epsilon p \]

Proof #2: Establishing the optimal position from nothing

\[\Upsilon = h(n) - np \]

Concavity of \(h(n) \) \(\Rightarrow \) downward slope of \(f(n) \)
Reserve Price

Why needed? Trading size not infinitely divisible.

Another CEPL formula: (easy financial interpretation)

\[\Upsilon(m, p) = m \left[r(m) - p \right] \]

Negative CEPL if \(r_b(\mid m \mid) < p < r_s(\mid m \mid) \).

Optimal CEPL formula:

\[\Upsilon_0(m) = m \left[r(m) - q(m) \right] \geq 0 \]

\(\Upsilon_0(m) \leftarrow \text{quote price curve} q(m) \rightarrow \Upsilon_0(p - f(n)) \)
Reserve Price

Why needed? Trading size not infinitely divisible.
Zero CEPL if trading m units at $r(m)$ per unit

$$r(m) = \frac{1}{m} [h(n + m) - h(n)]$$

$$= \frac{1}{\gamma m} \ln \frac{d + (1 - d) \exp(-\gamma n)}{d + (1 - d) \exp[-\gamma(n + m)]}$$
Reserve Price

Why needed? Trading size not infinitely divisible.

Zero CEPL if trading m units at $r(m)$ per unit

$$r(m) = \frac{1}{m} [h(n + m) - h(n)]$$
$$= \frac{1}{\gamma m} \ln \frac{d + (1 - d) \exp(-\gamma n)}{d + (1 - d) \exp[-\gamma(n + m)]}$$

Another CEPL formula: (easy financial interpretation)

$$\Upsilon(m, p) = m [r(m) - p]$$

Negative CEPL if $r^b(|m|) < p < r^s(|m|)$.
Reserve Price

Why needed? Trading size not infinitely divisible. Zero CEPL if trading \(m \) units at \(r(m) \) per unit

\[
r(m) = \frac{1}{m} [h(n + m) - h(n)]
\]

\[
= \frac{1}{\gamma m} \ln \frac{d + (1 - d) \exp(-\gamma n)}{d + (1 - d) \exp[-\gamma(n + m)]}
\]

Another CEPL formula: (easy financial interpretation)

\[
\gamma(m, p) = m [r(m) - p]
\]

Negative CEPL if \(r^b(|m|) < p < r^s(|m|) \).

Optimal CEPL formula:

\[
\gamma_o(m) = m [r(m) - q(m)] \geq 0
\]

\(\gamma_o(m) \leftarrow \text{quote price curve } q(m) \rightarrow \gamma_o(p - f(n)) \)
Schematic Drawing

- sell arbitrage price a_s
- sell quote price q^s
- sell reserve price r^s
- current fair value f
- buy reserve price r^b
- buy quote price q^b
- buy arbitrage price a^b

 Meaning w.r.t. trading size
sell arbitrage price a^s
sell quote price q^s
sell reserve price r^s
current fair value f
buy reserve price r^b
buy quote price q^b
buy arbitrage price a^b

Meaning w.r.t. trading size
Intuitive ranking

$r^b(\mu) \approx \frac{1}{2}[q^b(\mu) + q^b(0)]$
sell arbitrage price a^s

sell quote price q^s

sell reserve price r^s

current fair value f

buy reserve price r^b

buy quote price q^b

buy arbitrage price a^b

- Meaning w.r.t. trading size
- Intuitive ranking
- $q(m)$ and $r(m)$ asymmetric w.r.t. current fair value
sell arbitrage price a^s

sell quote price q^s

sell reserve price r^s

current fair value f

buy reserve price r^b

buy quote price q^b

buy arbitrage price a^b

- Meaning w.r.t. trading size
- Intuitive ranking
- $q(m)$ and $r(m)$ asymmetric w.r.t. current fair value
- $r(m) \approx \frac{1}{2} [q(m) + q(0)]$
Quote and Reserve Price Curves

Basis for making rational trading decisions!
Mutually Beneficial Trading

Example: Same everything except initial position

\[
\begin{array}{cccc}
\gamma n & \text{c.f.v.} & \gamma m & \text{p.t.f.v} \\
\hline
\text{Trader A} & 0.0 & 0.9500 & 0.25 & 0.9367 & 1.724 \times 10^{-3} \\
\text{Trader B} & 0.5 & 0.9202 & -0.25 & 0.9367 & 1.994 \times 10^{-3} \\
\end{array}
\]

Economical Reason: Risk Transfer!
Mutually Beneficial Trading

Example: Same everything except initial position

<table>
<thead>
<tr>
<th></th>
<th>γn</th>
<th>c.f.v.</th>
<th>γm</th>
<th>p.t.f.v</th>
<th>γγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trader A</td>
<td>0.0</td>
<td>0.9500</td>
<td>0.25</td>
<td>0.9367</td>
<td>1.724 × 10⁻³</td>
</tr>
<tr>
<td>Trader B</td>
<td>0.5</td>
<td>0.9202</td>
<td>−0.25</td>
<td>0.9367</td>
<td>1.994 × 10⁻³</td>
</tr>
</tbody>
</table>

Economical Reason: Risk Transfer!

Local Equilibrium: There exists a local equilibrium for any two traders, i.e., one can find a trading size m_* such that

$$f(n + m_*) = \tilde{f}(\tilde{n} - m_*)$$
Mutually Beneficial Trading

Example: Same everything except initial position

\[
\begin{array}{cccccc}
\gamma n & \text{c.f.v.} & \gamma m & \text{p.t.f.v} & \gamma \\
\hline
\text{Trader A} & 0.0 & 0.9500 & 0.25 & 0.9367 & 1.724 \times 10^{-3} \\
\text{Trader B} & 0.5 & 0.9202 & -0.25 & 0.9367 & 1.994 \times 10^{-3} \\
\end{array}
\]

Economical Reason: Risk Transfer!

Local Equilibrium: There exists a local equilibrium for any two traders, i.e., one can find a trading size \(m_* \) such that

\[
f(n + m_*) = \tilde{f}(\tilde{n} - m_*)
\]

Global Equilibrium: There exists a global equilibrium state for \(M \) traders.

May not reach there in a reasonable amount of time!
Summary

- derivatives should be priced in the context of portfolio optimization;
Summary

- derivatives should be priced in the context of portfolio optimization;
- derivatives pricing is preference and position dependent in incomplete markets, which is only meaningful from the personal perspective;
Summary

- derivatives should be priced in the context of portfolio optimization;
- derivatives pricing is preference and position dependent in incomplete markets, which is only meaningful from the personal perspective;
- the position dependent pricing offers a natural and systematic way to trade derivatives;
Summary

- derivatives should be priced in the context of portfolio optimization;
- derivatives pricing is preference and position dependent in incomplete markets, which is only meaningful from the personal perspective;
- the position dependent pricing offers a natural and systematic way to trade derivatives;
- derivatives trading in incomplete markets is mutually beneficial.
Further Information: www.atmif.com/qsdt

Quantitative Strategies for Derivatives Trading

Dennis Yang

- Book Excerpt
- Derivatives Pricing and Trading in Incomplete Markets: A Tutorial on Concepts
- A Simple Jump to Default Model