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Abstract

In this tutorial, various derivative pricing notions in incomplete markets are illustrated using a simple
example, with emphasis on how to use these pricing concepts to make systematic trading decisions.

keywords: derivatives, incomplete market

I. Introduction

This tutorial uses a computer game called trading risky bonds to illustrate derivatives pricing and trading in
incomplete markets. In the game, a unit face value zero-coupon bond has a probability d of default before
its maturity T . You, the player, are shown the current bond price p, and you then are asked to make a
trading decision, i.e., whether to buy or sell, and how many. To make matters as simple as possible, other
idealized assumptions also apply, such as allowing short selling and leverage (borrowing), no transaction
costs and no interest charges (zero interest rate).

This game is one of the simplest financial models that I can think of. In this model, the primary
modeling object is the default probability d, which is specified exogenously. A risky bond is treated as a
derivative in this setting, whose fair value can be “derived”, which will be made more precise later on. In a
financial model, it is important to distinguish what can and cannot be traded continuously. Here nothing
is traded continuously. After the initial trade, the game does not guarantee that you will be able to trade
the same risky bond again before its maturity.

Let me now explain the notion of complete and incomplete markets, and their relevance to derivatives
pricing. Assume that we have a derivative position, if we can find a trading strategy that eliminates all
risks associated with the position, i.e., make the final wealth distribution a delta function, then the market
is complete; otherwise it is called an incomplete market. The Black-Scholes world is a complete market,
because applying the well-known delta hedging scheme makes the portfolio riskless, which means that a
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derivative’s payoff function can be replicated using a dynamic trading strategy. Naturally a derivative’s
price is the value of the replicating portfolio in complete markets. Since in incomplete markets, no trading
strategies exist to eliminate all risks, i.e., to replicate a derivative’s payoff function, we must use other
means to price derivatives. It will be shown later in this tutorial that derivatives should be priced in the
context of portfolio optimization.

Why bother with incomplete markets? Because they are much better representations of the real world,
where a derivative position always incurs risks. The simple risky bond trading model here clearly belongs
to incomplete markets. Despite the level of mathematics involved in this tutorial does not go beyond that
of freshman calculus, the analysis of this simple model will reveal the richness of derivatives pricing in
incomplete markets.

II. Decisions under Uncertainty

Suppose the outcomes of game A and B are Gaussian random variables with means 1.0 and 0.6, and
standard deviations 1.0 and 0.5, respectively, which game do you prefer to play? Note that this is a
preference question, so there is no right or wrong answer.

Why is this relevant to derivatives pricing? Because in incomplete markets, by definition, no trading
strategies can eliminate uncertainty, so the final wealth is a random variable; applying different trading
strategies will result in different final wealth distributions. Therefore a systematic way to rank wealth
distributions will induce a natural way to rank trading strategies.

It is standard in economics and game theory to use the expected utility theory approach to rank
different wealth distributions. In the expected utility framework, a wealth level w is mapped to a utility
value, or happiness, by a utility function U(w). The expected utility, or average happiness, is computed
as E[U ] =

∫
U(w)ρ(w)dw, where ρ(w) is the probability density function of the final wealth (of course

∫
should be replaced by

∑
if w is discrete). Using a utility function, any wealth distribution is now mapped

into a real number that can be ranked.
The utility function U(w) should be an increasing strictly concave function. It is an increasing function

because people prefer states with more wealth; it is a concave function to model risk aversion. Note that
an expected utility maximizer will decline a game of flipping a coin with equal payoffs of opposite sign.
Risk aversion means that investors demand compensation for uncertainties. There are many choices for
utility functions; in this tutorial, I use the exponential utility function (see Fig. 1),

U(w) = −1
γ

exp(−γw) (1)

where γ is a positive parameter that controls risk aversion. A larger γ means more risk averse. Section 2.4
of [1] offers some suggestions on how to choose γ in reality. However, for the purpose of this tutorial, it is
not important to know what γ is. It will be seen shortly that γ and position size n always appear together
as a product, so only the dimensionless size γn matters.

It is clear that multiplying a utility function by a positive constant and adding any constant to it
will not affect the rankings of wealth distributions. This is called the affine transformation freedom of
utility functions, which means that utility values do not have a natural scale. For the exponential utility
function (1), the current wealth level w0 does not affect future decisions, as it can be factored out as a
positive multiplier. This fact is used implicitly below on the notion of indifference, in the sense that if you
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Figure 1: The exponential utility function with γ = 1.0. The vertical scale is left blank because utility
values do not have a natural scale.

are indifferent between a certain payment and a random outcome, then you are also indifferent between
paying that amount to receive the random outcome and doing nothing. The exponential utility function is
memoryless because your past actions affect only your current wealth level, which has no bearing on your
future decisions.

To summarize, once a utility function is chosen, the goal of playing any game with uncertain outcomes
is to adopt a strategy that maximizes its expected value.

III. Portfolio Optimization

Let us now come back to the simple risky bond trading game. The portfolio optimization strategy here is
to decide what the optimal position n̂ is based on all the available information. Note that for mathematical
convenience, a position size n̂ is treated as a real number, instead of an integer.

Suppose that you have no initial position and the bond price is p, let w0 be your initial wealth before
paying pn̂ for n̂ units of the risky bond, then the final wealth without default is w0 + (1 − p)n̂, and the
final wealth with default is w0 − pn̂ (no recovery). Assuming your investment horizon is the same as the
maturity of the risky bond, the expected utility of your final wealth is

E[U ] = (1− d) U(w0 + (1− p)n̂) + d U(w0 − pn̂)

where d is the default probability. Since by assumption n̂ is optimal, the first order derivative of E[U ] with
respect to n̂ must be zero, which leads to

(1− d)(1− p) U ′(w0 + (1− p)n̂) = dp U ′(w0 − pn̂) (2)
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Using the exponential utility function (1), equation (2) now becomes

γn̂ = ln
(1− d)(1− p)

dp
(3)

which gives the optimal position n̂ to hold for a given trading price p. Notice that, as mentioned earlier,
the current wealth level w0 drops out, and that the risk aversion parameter γ and the position size n̂

appear together as a product when using the exponential utility function. Because it is a zero interest
environment, the bond maturity T does not enter the problem explicitly; however, the default probability
d is implicitly T dependent.

Any market price p of the risky bond can be converted to a market implied default probability di by
equating the winning average (1− di)(1− p) with the losing average dip. A simple calculation shows that
di = 1−p. It is clear that if the default probability d is the same as the market implied default probability
di, then your optimal position is not to have a position (n̂ = 0); you want to take a long position (n̂ > 0)
if d < di, and a short position (n̂ < 0) if d > di. In addition to these qualitative conclusions, expression
(3) provides a quantitative answer for the exact position.

For this simple trading game, expression (3) is the bottom line. So in some sense, the game is over.
However, for the purpose of pricing derivatives in incomplete markets, I have just begun.

IV. Fair Value

I mentioned in Introduction that risky bonds are treated as derivatives in this simple trading game. Let
me first provide a working definition for the meaning of a derivative’s price, which applies to both complete
and incomplete markets. Your model’s fair value for a derivative is defined as follows: if the market price,
or trading price, of the derivative is lower than your model’s fair value, then you are a buyer, conversely
you are a seller if it is higher. When the market price and the fair value agree, you stay put, i.e., you are
in equilibrium with the market. For this reason, the fair value is also called the equilibrium price (the two
terms are used interchangeably). The fact that you stay put when the market price and the fair value agree
means that the equilibrium state is optimal, otherwise you would have chosen to change your position.

What is the fair value f of the risky bond? It is given by the following formula

f =
1− d

(1− d) + d exp(γn)
(4)

where n is your current position of the risky bond. Let us check whether f satisfied the working definition
of the fair value. When the market price p = f , after substituting (4) into (3), the optimal position n̂

equals your current position n; thus you stay put. Analogously, it is not difficult to show that if p < f ,
then the optimal position n̂ is greater than n, hence you are a buyer; and vice versa. Therefore I have
shown that the f given by formula (4) is indeed the fair value.

The following observation is extremely important: Formula (4) says that your fair value f depends not
only on the model and its parameters, i.e., the default probability d in this problem, but also on your risk
preference γ and current position n. This position dependency offers a natural way to trade derivatives
systematically, which I will address in a minute.

Where does formula (4) come from? It is obtained by inverting expression (3). The key to solve the
problem is to ask yourself the following question: What should the market price be in order for my current
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position to be optimal? In other words, the necessary condition of the current portfolio being optimal
is that the market price equals the current fair value. Hence derivatives can be priced naturally in the
context of portfolio optimization.

In complete markets, derivatives can also be priced in the context of portfolio optimization. In this case,
the position dependency happens to drop out of the option pricing equation—the Black-Scholes equation
(see Section 3.2 of [1]). Therefore the position dependency feature of derivative pricing reveals that the
underlying model market is incomplete.

In general different traders have different risk preferences and different positions. Due to risk preference
and position dependency, derivative pricing in incomplete markets is only meaningful when you take the
personal perspective. If you take the market perspective, then both concepts, i.e., the aggregated market
risk preference and the aggregated market position, are murky. However, from the personal perspective,
you know, or should know, your own risk preference, and you definitely know your current position; thus
there is no ambiguity.

V. How to Trade

The fair value f is position dependent and I now make the position dependency notationally explicit by
writing it as f(n). Suppose the current, or the pre-trade, position is n, and the trading size is m, then
the post-trade position is n + m. As long as your fair value based on your post-trade position is not the
market price, or the trading price, you are not in equilibrium with the market, you need to adjust your
position, i.e., trading with the market, to make them equal. Therefore for a given trading price p, the
optimal trading size m is obtained by solving the local equilibrium equation

f(n + m) = p (5)

which has the solution (cf. (3))

m =
1
γ

ln
(1− d)(1− p)

dp
− n = n̂− n (6)

i.e., for a given price p, the optimal trading size is simply the optimal position n̂ (post-trade) minus the
current position n (pre-trade). Now you see how position dependency of the fair value offers a natural and
systematic way to trade derivatives.

Let q(m) := f(n + m) be the post-trade position based fair value as a function of the trading size m

(cf. (4)),

q(m) =
1− d

(1− d) + d exp[γ(n + m)]
(7)

The function q(m) is plotted in Fig. 2. The curve in the figure clearly demonstrates that you are a buyer
(m > 0) when the trading price is less than the current fair value, or equilibrium price, 0.9202 (the
horizontal dotted line); thus the right half of the curve can be thought as your personal demand curve.
Conversely you are a seller (m < 0) when the trading price is greater than the current fair value, thus the
left half of the curve can be regarded as your personal supply curve. Therefore the curve q(m) is called
the personal supply-demand curve. Note that the personal supply-demand curve depends on the pre-trade
position n as well.

5



 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

-1 -0.5  0  0.5  1

P
o
s
t-

tr
a
d
e
 F

a
ir
 V

a
lu

e

Dimensionless Trading Size

Figure 2: The personal supply-demand curve. The horizontal axis is γm. The parameters are: the default
probability d = 0.05, and the pre-trade position γn = 0.5.

From (7), it is easy to show that q′(m) < 0, i.e., the personal supply-demand curve q(m) is always
downward sloping. This feature guarantees that trading with the market will eventually reach an equi-
librium state. Because you are a buyer when the market price is lower than the fair value based on your
current position; buying (m > 0) lowers your fair value based on the post-trade position, thus eventually
your fair value will meet the market price. Similar logic works for the selling situation. The negative slope
property of the personal supply-demand curve means that the inventory control mechanism, which is a
natural consequence of risk aversion, is automatically built into the trading system, because buying lowers
your fair value and selling raises it. This feature is important in reality, as all real-life traders use some
sort of inventory control mechanism when making trading decisions.

The notion of a trading edge is defined to be the price difference between the trading price and the
current fair value, i.e., p−f(n), with the convention that a positive trading edge is associated with selling,
and the negative one with buying. The personal supply-demand curve shows that a bigger absolute trading
edge |p− f(n)| leads to a bigger absolute trading size |m|, which fits the intuition of all real-life traders.

There is another important use for the personal supply-demand curve—generating quotes. Suppose
you are asked to make a bid on buying m > 0 risky bonds, how do you bid? You know that if you trade
m units of the risky bond based on your post-trade fair value q(m) := f(n + m), then you would be in
equilibrium with the market after the trade, in the sense that the trading price, which can be viewed as the
market price, equals your post-trade fair value. Thus the post-trade fair value q(m) is a good candidate
for the bid price. Similar logic applies to the ask price (m < 0) case. In summary, you use the fair value,
or equilibrium price, based on the post-trade position as the quote price. For this reason, the personal
supply-demand curve q(m) is also known as the quote price curve. Pick a pair of numbers mb > 0 and
ma < 0, at any given time, you are willing to post the following four numbers: {q(mb), |mb|}, {q(ma), |ma|},
which are the {bid price, bid size}, and the {ask price, ask size}. The action of posting these four numbers
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is called making a market. Therefore the quote price curve can be used to make markets.

VI. Certainty Equivalent Profit and Loss

Once a trade occurs, a natural question is how good the trade is. One obvious measure is the amount of
expected utility a trader gains through the trade. Since utility values do not have a natural scale due to
the affine transformation freedom, a better measure for a trade is the certainty-equivalent profit and loss
(CEPL), as I now explain.

The reason to participate in a trade is that it increases your expected utility. Receiving a lump sum
of money (but not doing the trade) also increases your expected utility. If you are indifferent between
the trade and the amount Υ in lieu of the trade, then Υ is defined as the CEPL of the trade. To be
more specific, assuming that w0 is your current wealth excluding the n risky bonds in your portfolio,
furthermore you just traded m bonds at the price of p per bond. Then your final wealth without default is
w0− pm+(n+m), and your final wealth with default is w0− pm. The final expected utility in this case is

E1[U ] = (1− d) U(w0 − pm + n + m) + d U(w0 − pm)

If you receive a lump sum Υ, but forfeit the trade, then your final wealth without default is w0 + Υ + n,
and your final wealth with default is w0 + Υ. The final expected utility in this case is

E2[U ] = (1− d) U(w0 + Υ + n) + d U(w0 + Υ)

By definition, E1[U ] = E2[U ], after substituting the exponential utility function (1) for U , the expression
for Υ is

Υ(m, p) = −1
γ

ln
d + (1− d) exp[−γ(m + n)]

d + (1− d) exp(−γn)
−mp (8)

where I have made it notationally explicit that the CEPL of a trade is a function of both the trading size
m and the trading price p.

I first investigate CEPL Υ as a function of the trading price p, or equivalently the trading edge p−f(n),
where f(n) is the current fair value (based on the pre-trade position n). There are two cases to consider:
Case (i), the trading size m is fixed. Expression (8) says that Υ is a linear function of p. In the case of
buying (m > 0), the line has a negative slope, which means the lower the price, the higher the CEPL.
Conversely, in the case of selling (m < 0), the line has a positive slope, which means the higher the price,
the higher the CEPL. These conclusions are intuitive, as shown by the two dotted straight lines in Fig. 3.
Case (ii), m is optimally chosen (cf. (6)). The CEPL in this case is defined to be the optimal CEPL Υo,
which is plotted in Fig. 3 as the parabola-like curve. The minimum of the optimal CEPL curve is zero,
which occurs when the trading price p agrees with your current fair value; there is no trading in this case
because the current position is optimal. As long as the nonzero trading size is determined optimally, the
corresponding Υo is always positive, otherwise you would choose not to trade. It is clear from the optimal
CEPL curve that a larger absolute trading edge also means a larger optimal CEPL, which again fits the
intuition of real-life traders. The parabola-like optimal CEPL curve always lies above the two straight
lines, because by definition, the optimal trading size maximizes the CEPL at a given trading price.

Notice that when |m| is fixed, the CEPL is negative when the trading price is too close to the current
fair value, or when the absolute trading edge is too small. This is because when the trading price equals
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Figure 3: The dimensionless CEPL γΥ is plotted against the trading edge p − f(n). The solid curve
corresponds to the case where the trading size is optimally chosen; whereas the two dotted straight lines
correspond to the cases of the absolute value of the dimensionless trading size γ|m| being fixed at 0.4. The
parameters are: the default probability d = 0.05, and the pre-trade position γn = 0.5.

the current fair value, your current position is optimal, changing the current equilibrium position without
being compensated enough on the trading price decreases your expected utility, or equivalently produces
a negative CEPL. It is evident from Fig. 3 that for the same absolute trading size, buying and selling at
the current fair value may cause different damages. In the case of buying at the fixed size γm = 0.4, as the
trading price decreases from your current fair value (0.9202), your CEPL improves, until at a special price
rb = 0.9038 (trading edge −0.01645), which is called the buy reserve price (left small circle in Fig. 3), the
CEPL is zero; i.e., you break even utility-wise. Further discussion on the reserve price will be presented
later. Lowering the trading price further makes your CEPL positive. At another special price qb = 0.8854,
which is called the buy quote price (left plus sign in Fig. 3), the line and the optimal CEPL curve touch.
If trading takes place at this price, then the optimal trading size is precisely 0.4, because the trading price
here is just the equilibrium price based on the post-trade position. Similar price points rs = 0.9334 (right
small circle) and qs = 0.9451 (right plus sign) exist when selling at the fixed size γm = −0.4.

I now consider CEPL Υ as a function of the trading size m. Again there are two cases to study: Case
(i), the trading price p is fixed (at 0.8854). This corresponds to the dotted curve in Fig. 4. It is clear
that selling (m < 0) below the current fair value (0.9202) produces a negative CEPL, which you will not
do voluntarily. Instead of selling, buying a small amount results in a positive CEPL as expected; your
CEPL increases with respect to your trading size, until it reaches its maximum at the optimal trading size
(γm = 0.4), after which it decreases as the trading size increases. Therefore an important message from
Fig. 4 is that the optimal trading size problem under a given trading price has a unique answer. The CEPL
will eventually dip below zero as the trading size becomes too large, which means that you are better off
utility-wise not doing the trade. The crossover point is given a special name—the reserve trading size. In
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Figure 4: The dimensionless CEPL γΥ is plotted against the dimensionless trading size γm. The solid
curve corresponds to the case where the trading price is the post-trade based equilibrium price, whereas
the dotted curve corresponds to the case of the trading price being fixed at 0.8854. The parameters are:
the default probability d = 0.05, and the pre-trade position γn = 0.5.

other words, as long as the trading size is below the reserve trading size, the CEPL is positive. The moral
of the story is that you should never trade too big at a given trading price. Case (ii), p is the equilibrium
price based on the post-trade position (cf. (7)). This is plotted as the solid curve in Fig. 4, which again
corresponds to the optimal CEPL Υo, so it is nonnegative. Other than the origin, the two curves intersect
at the optimal trading size (0.4). For a given trading size, the trading price for the two curves are different.
When m < 0, the selling price on the solid curve is higher than that of the dotted curve, so the solid curve
has a better CEPL. When γm > 0.4, the buying price on the solid curve is lower than that of the dotted
curve, so again the solid curve has a better CEPL. However, when 0 < γm < 0.4, the buying price on the
dotted curve is lower than that of the solid curve, so that segment of the dotted curve lies above the solid
one.

VII. Portfolio Indifference Price

I now pose a different question in this section. What is the most you are willing to pay to take over a
position of n units of the risky bond from the initial empty portfolio? Assuming that w0 is your initial
wealth before paying h for the n risky bonds, then the final wealth without default is w0 + n− h, the final
wealth with default is w0 − h. The final expected utility is

E[U ] = (1− d) U(w0 + n− h) + d U(w0 − h)

Since the goal is to maximize the expected utility, you would not do something voluntarily that reduces the
expected utility, which implies that the most amount h you are willing to pay is to make the two expected
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utilities (before and after putting on the position) equal, i.e.,

U(w0) = (1− d) U(w0 − h + n) + d U(w0 − h) (9)

Substituting the exponential utility function into (9) leads to

h(n) = −1
γ

ln [d + (1− d) exp(−γn)] (10)

The quantity h(n) given by expression (10) is called the portfolio indifference price, which is an important
concept, as I will show in a minute that other quantities are directly related to it. Of course, h = 0 when
the portfolio is empty (i.e., n = 0).

Based on expression (10), the CEPL formula (8) can be written as

Υ(m,S) = h(m + n)− h(n)− S (11)

where S := mp is the total amount paid (when S > 0) or being paid (when S < 0) to go from the pre-trade
position n to the post-trade position n + m. This formula provides a general way to compute CEPL of a
trade in incomplete markets. The reason formula (11) is valid for all incomplete market models is that it
can be derived simply based on the notion of indifference. By definition, the CEPL of a trade with size
m means that you are indifferent between the choices of (i) the pre-trade position n with a lump sum Υ,
and (ii) paying S to do the trade, i.e., to establish the post-trade position n + m. Since by the definition
of portfolio indifference price, a position l and a lump sum h(l) are equivalent, formula (11) immediately
follows.

There is an important relation between the fair value f(n) and the portfolio indifference price h(n).
Taking the first order derivative of h(n) with respect to n, it is easy to verify from (4) and (10) that

f(n) = h′(n) (12)

which is called the tangent relation. The tangent relation can also be derived from financial reasoning.
Suppose the current market price of the risky bond p equals your current fair value f(n), then your current
position is optimal. Changing your current and optimal position by an infinitesimal amount ε � 1 should
leave your expected utility unchanged (to the first order), which means zero CEPL for the infinitesimal
size trade, i.e., 0 = h(ε + n)− h(n)− εp (cf. (11)). This immediately leads to the tangent relation, bearing
in mind p = f(n).

There is another financial angle to view the tangent relation. Suppose your initial portfolio is empty,
and you pay the market price p for each of the n risky bonds. The CEPL for this trade is h(n) − pn (cf.
(11) with h(0) = 0 and S = np). Since the goal of doing a trade is to maximize the expected utility, or
equivalently the CEPL, the optimal position n is determined through the equation h′(n) − p = 0. When
your position is optimal, you are in equilibrium with the market. The local equilibrium equation says that
your fair value f = p, which immediately leads to the tangent relation f = h′.

Other properties of the portfolio indifference price are discussed in [2, 3]. One especially important
property is that h(n) is always a concave function. The concavity of h coupled with the tangent relation
immediately leads to f ′(n) < 0, which is the negative slope result of the personal supply-demand curve. It
guarantees that an equilibrium state can always be reached by trading with the market.

10



The concavity of h can also be used to show that the optimal CEPL is nonnegative. Recall that if the
trading price equals the equilibrium price based on the post-trade position, or the trading size is optimally
chosen, then the CEPL of the trade is called optimal, which can be computed as follows (cf. (11))

Υo(m) = h(n + m)− h(n)−mf(n + m) (13)

Draw a picture of a concave function and use the tangent relation f = h′, it is easy to see geometrically
that Υo ≥ 0, with the equality holding when m = 0.

Since the quantity h(n)−nf(n) is the optimal CEPL Υo of establishing the position n from the empty
portfolio (h(0) = 0), the following option portfolio inequality is established

h(n) ≥ nf(n) (14)

In incomplete markets, which is the case here, the strict inequality holds as long as n 6= 0. In complete
markets, the portfolio indifference price is a linear sum of fair values that are not position dependent, so
the equality in (14) holds.

I now use formula (11) to show that CEPL is an additive quantity. Assuming m = m1 + m2 and
S = S1 + S2, then

Υ(m,S) = [h(m2 + m1 + n)− h(m1 + n)− S2] + [h(m1 + n)− h(n)− S1]

= Υ(m2,S2) + Υ(m1,S1) (15)

Thus the CEPL of a two-step trade is the sum of each step. The first two terms on the right hand side
of (11) only depend on the final and initial positions; the last term S depends on the trading path, i.e.,
intermediate trading prices. Therefore the overall CEPL is trading path dependent. A natural question is
what are the best and worst paths given that the trading size is always chosen optimally at each step. Let
the total trading size be m, the best path takes a single trade to reach the final state, the overall CEPL
in this case is given by (13); the worst path takes infinite number of steps, of which the overall CEPL
h(n + m)− h(n)−

∫ m
0 f(n + y) dy becomes zero due to the tangent relation. This explains why in real life

a dealer always wants to take the counter party out in a single big trade at the post-trade based fair value
(final equilibrium price), rather than many small trades with trading prices progressing towards the final
equilibrium price.

VIII. Reserve Price

I now expand on the reserve price concept mentioned earlier. The optimal trading size problem is to
determine what size to trade for a given trading price. But the trading size is given in many real-life
circumstances, especially for over-the-counter derivatives contracts, where there is only one trading size,
either trade the whole contract or none at all. To decide whether to participate in a trade when the trading
size m is prespecified, the notion of reserve price is needed.

As shown by the left dotted line in Fig. 3, which corresponds to the case of buying with a given size,
the CEPL is positive only if the unit-trading price is lower than the threshold rb(m) (left small circle).
Therefore the most you are willing to pay for the m bonds is rb(m) per bond. When the trading price is
precisely rb(m), the CEPL of the trade is zero, thus you are indifferent between whether to buy or not.
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The sell reserve price rs(|m|) is defined in a similar way. The reserve price r(m) is clearly a function of
the trading size m, with m > 0 meaning buy and m < 0 meaning sell. For a given absolute trading size
of |m| units, your corresponding buy reserve price r(|m|) and sell reserve price r(−|m|) form a range (see
the two small circles in Fig. 3). If the unit trading price p falls within this range, then you do not wish to
participate in that trade, buy or sell, because doing so lowers your expected utility.

The question now becomes how to compute r(m) in general. By the definition of reserve price, after
paying the amount S = m r(m) (or being paid if S < 0) to go from the pre-trade position n to the post-
trade position n + m, you break even utility wise, i.e., zero CEPL. The CEPL formula (11) immediately
leads to

r(m) =
1
m

[h(n + m)− h(n)] (16)

In the case of trading risky bonds, the explicit expression for the reserve price is (cf. (10))

r(m) =
1

γm
ln

d + (1− d) exp(−γn)
d + (1− d) exp[−γ(n + m)]

(17)

Based on the notion of reserve price, the CEPL formula (11) can be rewritten as

Υ(m, p) = m [r(m)− p] (18)

which means that in order for the CEPL of the trade to be positive, you must buy (m > 0) below your buy
reserve price, or sell (m < 0) above your sell reserve price. The financial interpretation of (18) is simple:
If you view r(m) as your break even cost per unit, then your profit of the trade is the difference of the
unit prices times the total number of units being traded. Recall that if the trading price is the quote price,
then the CEPL is called optimal, which can be computed with the following formula

Υo(m) = m [r(m)− q(m)] (19)

Since the optimal CEPL is always positive when m 6= 0, the buy quote price qb(m) is always lower than
the corresponding buy reserve price rb(m), whereas the sell quote price qs(m) is always higher than the
corresponding sell reserve price rs(m). This situation is shown clearly in Fig. 5. Notice that the two curves
in the figure intersect at the current fair value with coordinate (0.0, 0.9202), which is the result of reserve
price formula (16) and the tangent relation (12). The two dotted lines in Fig. 5 will be commented on
later.

After buying m units of the risky bond at price p per bond, there are five possible situations: (i) If
p = qb, then you maintain equilibrium with the market, the CEPL of this trade is called optimal. (ii) If
p < qb, then your new fair value (based on the post-trade position) is still higher than p, which means you
want to buy more; the CEPL of this trade is greater than the optimal value, I call it the super-optimal
CEPL. (iii) If qb < p < rb, then your new fair value is lower than p, which implies you want to sell out
some bonds if the trading size were divisible; the CEPL of this trade is called the sub-optimal CEPL. (iv)
If p = rb, then the CEPL of this trade is zero, which means you are indifferent whether to trade or not, so
probably you are doing someone a favor by buying at rb. (v) If p > rb, then the trade has negative CEPL,
which you do not want to do voluntarily. Obviously similar concepts are applicable to the sell situation as
well.
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Figure 5: The trading price is plotted against the dimensionless trading size. The dashed curve is the
reserve price r(m) (cf. (17)); the solid curve is the quote price q(m) (cf. (7)), which is the same as the
one shown in Fig. 2. The two dotted straight lines represent, respectively, the situations of trading with a
fixed price p = 0.8854 (horizontal) and trading with a fixed size γm = 0.4 (vertical). The parameters are:
the default probability d = 0.05, and the pre-trade position γn = 0.5.

IX. Arbitrage Price

Recall that the personal supply-demand curve is downward sloping (see Fig. 2), which means that q(m)
is a monotone decreasing function of the trading size m. Now define two limits (assuming they exist) as
follows:

ab := lim
m→+∞

q(m) (20)

as := lim
m→−∞

q(m) (21)

The number ab is called the buy arbitrage price, because if the risky bond were to trade at a price p that
is less or equal to ab, then you would want to buy an infinite amount. Since you are risk averse, the only
possible way for this to occur is for the model to admit an arbitrage when p ≤ ab. Similarly, as is called
the sell arbitrage price.

For the risky bond, it is easy to check that the buy arbitrage price is 0, and the sell arbitrage price is
1, which does not convey much useful information. In a general incomplete market model, there may not
be an easy way to compute these two arbitrage prices. Fortunately for real-life traders, the buy and sell
arbitrage prices are of limited use, because usually (ab, as) form a wide range, and the market price p is
not anywhere near ab or as in normal circumstances.
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X. Connecting the Dots

I now comment on the two dotted lines in Fig. 5, and their relationship with Fig. 3 and Fig. 4.
I first discuss the connection to Fig. 3, in which the left straight line is for the case of buying with

the fixed dimensionless trading size γm = 0.4. This corresponds to moving along the vertical dotted line
in Fig. 5 from bottom to top. Note that the vertical axis of Fig. 5 corresponds to the horizontal one of
Fig. 3. The CEPL of the trade decreases along the way because your purchasing price is continuously
getting worse; recall that your CEPL is called super-optimal before you hit the quote price curve; when
you are on the quote price curve, which corresponds to the left plus sign in Fig. 3, your post-trade position
is optimal for that trading price. When you hit the reserve price curve, which corresponds to the left circle
in Fig. 3, your CEPL crosses zero into the negative territory. Of course moving further up the line gives
worse negative CEPLs. The solid curve in Fig. 3 corresponds to moving from bottom to top along the
quote price curve in Fig. 5. If you wonder what the CEPL curve (such as the ones in Fig. 3) would look
like when you move along the reserve price curve in Fig. 5 (the dashed one), the answer is a flat line at
zero.

I now discuss the connection to Fig. 4. The dotted curve in Fig. 4 is for the case of trading at the
fixed price p = 0.8854. This corresponds to moving along the horizontal dotted line in Fig. 5 from left to
right. The CEPL of the trade is negative for m < 0, since selling below your current fair value cannot
possibly be good. As you start to buy (m > 0), the CEPL crosses into positive territory. Increasing the
trading size increases the CEPL, until it reaches its maximum value (optimal CEPL) when you hit the
quote price curve, which gives you the optimal trading size for that trading price. Moving further towards
right decreases the CEPL, until it crosses zero when you hit the reserve price curve, which gives you the
reserve trading size for that trading price. The solid curve in Fig. 4 corresponds to moving from left to
right along the quote price curve in Fig. 5 (the solid one).

Other than the instrument being traded, you need two quantities to describe a trade, namely trading
size and trading price. The quote price curve and the reserve price curve shown in the size–price plot
Fig. 5 are extremely important, because they are the basis for making rational trading decisions, which are
summarized as follows: (i) When the trading price or the trading edge is fixed, corresponding to a horizontal
line in the graph, you want the trade to occur at the optimal trading size, which is the intersection of the
horizontal line and the quote price curve. You never want to trade at a size that is bigger than the reserve
trading size, which is the intersection of the horizontal line and the reserve price curve. (ii) When the
trading size is predetermined, corresponding to a vertical line in the graph, you aim for the trade to occur
at the quote price, which is the intersection of the vertical line and the quote price curve. However if you
can trade at a better price, i.e., buying below your buy quote price or selling above your sell quote price,
then jump on it. Never participate in a trade with a price that is worse than your reserve price, which is
the intersection of the vertical line and the reserve price curve, i.e., do not buy above your buy reserve
price or sell below your sell reserve price.

Having explained all the relevant prices, I present a schematic drawing in Fig. 6 to illustrate their relative
relationship. Here is a quick recap of various concepts involved: The current fair value, or equilibrium
price, is associated with an infinitesimal trading size; both the (buy/sell) reserve prices and the (buy/sell)
quote prices are associated with a given finite absolute trading size; and the (buy/sell) arbitrage prices are
associated with an infinite absolute trading size.
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Figure 6: Schematic drawing for various prices

I now point out two features in Fig. 6. The first is that the buy and sell prices (both quote and reserve)
are in general asymmetric around the current fair value. The second is that the reserve price r(m) always
lies between the current fair value f(n) and the quote price q(m). The ranking of various prices is intuitive
with respect to their financial meanings.

XI. Mutually Beneficial Trading

In complete markets, derivatives can be priced using the arbitrage argument. The crux of the arbitrage
argument is perfect replication, which means derivatives are redundant. Therefore there is no economical
reason for their existence. Since derivatives do exist in the real world, we need to use an incomplete market
model, in which derivatives are no longer redundant, to approximate the reality. In this section, I show
that trading derivatives in incomplete markets is mutually beneficial.

Let me provide an example first. Suppose you think that a risky bond has 5% chance of default before
maturity, and it is offer on the market at 0.9367. You know it is cheap, your computation (cf. (6)) shows
that the optimal trading size at this price is γm = 0.25 (assuming no pre-trade position). Naturally you
go ahead and do the trade, and have gained a CEPL of γΥ = 1.724× 10−3 (cf. (13)).

Why would anyone sell you the bond at that price? A possible rational explanation is that he thought
the bond had a higher default rate. What if you are told that he shared your risk aversion parameter γ

and that he also believed the bond had 5% chance of default, would you then regard him as an idiot to
sell the bond below 0.95? Well, I might sell it to you below 0.95. Let me explain. My bond fair value was
only 0.9202 before I traded with you, because I had an inventory (pre-trade position) of γn = 0.5 bonds.
At price 0.9367, my optimal trading size was γm = −0.25; in fact 0.9367 was my sell quote price for selling
0.25 bonds. I have gained a CEPL of γΥ = 1.994 × 10−3 by trading with you. Therefore, I might be an
idiot overall, but not on this trade.

In this example, the trade occurred because we had different initial pre-trade positions. Clearly we
have both benefited from the trading (positive CEPLs). What is the economical reason behind it? The
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answer is risk transfer. In incomplete markets, having positions means taking risks. But any risk has a
price associated with it. At price level 0.9202, I was willing to take the risk associated with the position
γn = 0.5; but that position became too risky at price level 0.9367, hence I was happy to unload some of my
position to you. Note that to establish my original position, it must be that I was able to buy some of the
bond at 0.9202 earlier. However, under the exponential utility function, how I established my pre-trade
position had no bearing on whether or how to trade with you. After doing this single trade, the two of us
have established a local equilibrium, as both of us share the same fair value for the bond (0.9367).

So far I have assumed that we both share the same risk aversion parameter γ, and the model parameter
default probability. What if this is not the case? The fair value of a risky bond is position and model
dependent; in general we will have different fair values for that bond based on our own model and position,
i.e., f(n) 6= f̃(ñ), where n and ñ are our respective current position. I now prove that we can always
establish a local equilibrium state by trading with each other; i.e., there exist a trading size m∗ such that

f(n + m∗) = f̃(ñ−m∗) (22)

Note one of us is buying and the other is selling depending on the sign of m∗. To prove this result, define
an auxiliary function g as follows

g(m) := h(n + m) + h̃(ñ−m) (23)

where h and h̃ are portfolio indifference prices for the two of us. Note that g(m) is simply the sum of the
two CEPLs (omitting terms that are independent of m). Because both h and h̃ are concave functions, the
auxiliary function g(m) is also a concave function, which has a unique global maximum point m∗. Using
the tangent relation f = h′, it is easy to see that m∗ satisfies the equilibrium relation (22). Although this
argument does not exclude the possibility that the unique maximum point m∗ might be at plus or minus
infinity, it cannot happen for this problem because (22) would have been violated (one side is the buy
arbitrage price zero, while the other is the sell arbitrage price one).

Therefore whenever we disagree on a risky bond’s fair value, we can always eliminate the valuation
disparities by trading with each other. Since the equilibrium state is optimal, both of us gain expected
utilities through trading, thus trading is a mutually beneficial, i.e., it is a win-win game utility wise. In
conclusion, derivatives trading in incomplete markets increases happiness of all parties involved.

XII. Static Hedging

So far there is only one type of risky bond in this trading game. Since the concept of hedging is associated
with more than one financial instrument, the trading universe is enlarged from one bond to two bonds
with different maturities T1 and T2 (T1 < T2). Of course the two bonds share the same default risk factor,
with the default probability during the first period [0, T1] being d1, and the one during the second period
[T1, T2] being d2.

Dynamic hedging is allowed if one of the primary modeling objects can be continuously traded, e.g.,
continuous-time geometric Brownian motion model for a stock price. Since nothing is traded continuously
in this trading game, only static hedging is possible. In the sense that the game provides you an opportunity
to trade now, if you do not take the opportunity, then the game may not let you trade the same instrument
at later time.
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Let me present a few basic formulas first before discussing static hedging. Assuming your current
position has n1 and n2 of the T1 and T2 bonds, respectively, there are three possible scenarios: (i) Default
occurs in the first period. The probability is d1, and the final wealth is 0. (ii) Default occurs in the second
period. The probability is (1 − d1)d2, and the final wealth is n1. (iii) Default does not occur in either
period. The probability is (1− d1)(1− d2), and the final wealth is n1 + n2. Thus the final expected utility
is

E[U ] = d1 U(0) + (1− d1)d2 U(n1) + (1− d1)(1− d2) U(n1 + n2)

By the definition of portfolio indifference price h, we have U(h) = E[U ]. Substituting the exponential
utility function (1) leads to

h(n1, n2) = −1
γ

lnD(n1, n2) (24)

where D is defined as

D(n1, n2) := d1 + (1− d1) exp(−γn1)[d2 + (1− d2) exp(−γn2)] (25)

Notice that h(n1, n2) 6= h(n1, 0) + h(0, n2), so h is a quantity associated with the whole portfolio, which is
not a simple sum of its parts in incomplete markets.

Using the tangent relation (12), the fair-value formulas for the T1 and T2 bonds are

f1(n1, n2) =
∂h

∂n1
=

1
D(n1, n2)

(1− d1) exp(−γn1)[d2 + (1− d2) exp(−γn2)] (26)

f2(n1, n2) =
∂h

∂n2
=

1
D(n1, n2)

(1− d1)(1− d2) exp[−γ(n1 + n2)] (27)

where D(n1, n2) is given by (25). Let p1 and p2 be the trading prices for the T1 and T2 bonds, respectively.
The local equilibrium equation says that the optimal post-trade positions n̂1 and n̂2 must satisfy

f1(n̂1, n̂2) = p1 (28)

f2(n̂1, n̂2) = p2 (29)

These two equations are easy to solve, the solution is

γn̂1 = ln
d2(1− d1)(1− p1)

d1(p1 − p2)
(30)

γn̂2 = ln
(1− d2)(p1 − p2)

d2p2
(31)

The optimal trading sizes for the two bonds are m1 = n̂1 − n1 and m2 = n̂2 − n2. Notice that because
T2 > T1, the T2 bond is more likely to default, so we must have p1 > p2, otherwise there is a trivial
arbitrage by buying the T1 bond and shorting the T2 bond.

I now investigate the scenario of making trading decisions on the T1 bond, while static hedging with
the T2 bond. This could be the case because the T1 bond is illiquid, whereas the T2 bond is more liquid.
I will compare the following three situations: (i) no hedging with the T2 bond; (ii) the T2 bond has zero
bid-ask spread; (iii) the T2 bond has finite bid-ask spread. It is assumed that you can trade sufficient
numbers of the T2 bond at the bid or ask price. The following parameters are used to generate the figures
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Figure 7: The trading price is plotted against the dimensionless trading size for the T1 bond. There are
three sets of quote and reserve price curves. The dotted ones are for the situation of no hedging; the solid
ones are for static hedging with zero bid-ask spread; the dashed ones are for static hedging with finite
bid-ask spread. Within each set, the quote price curve always has a larger negative slope.

of this section: the default probabilities are d1 = 0.05 and d2 = 0.03; the pre-trade position is γn1 = 0.5
and γn2 = 0; in the case of zero bid-ask spread, the T2 bond is trading at p2 = 0.8925, which is the current
fair value of the T2 bond based on the pre-trade position; in the case of finite bid-ask spread, the bid and
ask prices of the T2 bond are p2b = 0.8770 and p2a = 0.9114, respectively.

The most important things to know with respect to making rational trading decisions on the T1 bond
are its quote and reserve price curves. In situation (i) of no hedging, the quote price curve is q1(m1) =
f1(n1 + m1, n2); the reserve price curve is r1(m1) = [h(n1 + m1, n2) − h(n1, n2)]/m1. This set of curves
is plotted in Fig. 7 as the dotted ones, which are the same as the ones in Fig. 5. In situation (ii) of zero
bid-ask spread, the quote price curve is q̄1(m1) = f1(n1 + m1, n2 + m2), where the optimal hedging size
m2 is solved from the local equilibrium equation f2(n1 + m1, n2 + m2) = p2, with p2 being the hedging
price for the T2 bond. By definition, if a trade occurs at the reserve price, the CEPL of the trade is zero,
thus 0 = h(n1 + m1, n2 + m2)− h(n1, n2)−m1r̄1(m1)−m2p2, which means that the reserve price curve is
r̄1(m1) = [h(n1 + m1, n2 + m2)− h(n1, n2)−m2p2]/m1. This set of curves is plotted in Fig. 7 as the solid
ones. It is clear that the slopes of the solid curves are much smaller than the dotted ones, which means for
a given trading edge, the optimal trading size is much bigger when static hedging is allowed; alternatively
for a predetermined trading size, you demand much less price concession under static hedging. These
conclusions are intuitive.

I now study situation (iii) of static hedging with finite bid-ask spread. I will focus on the case of
buying (m1 > 0) T1 bond first. Buying the T1 bond lowers the fair value (based on the post-trade
position) of the T2 bond (cf. (27)). As long as the fair value of the T2 bond is higher than its bid price,
no static hedging takes place, because doing so (selling below the current fair value) lowers the expected
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utility. At the critical trading size γm1b = 0.2 of the T1 bond with the corresponding critical trading edge
p1c − f1(n1, n2) = −0.01598, the fair value of the T2 bond equals its bid price, i.e., f2(n1 + m1b, n2) =
p2b = 0.8770. Increasing the buying size of the T1 bond further causes the static hedging to occur by
triggering the selling of the T2 bond at its bid price. Thus the quote and reserve price curves of the T1

bond with m1 > 0 consist of two segments—no hedging first and then static hedging. The selling case
is completely analogous: at the critical trading size γm1a = −0.3 of the T1 bond with the corresponding
critical trading edge p1c − f1(n1, n2) = 0.01944, the fair value of the T2 bond equals its ask price, i.e.,
f2(n1 + m1a, n2) = p2a = 0.9114. Therefore the dashed curves in Fig. 7 corresponding to the finite bid-ask
spread static hedging case is a mixture of no hedging and then static hedging, with the middle segments
of the dashed curves coincide with those of the no hedging case. When the bid-ask spread narrows, the
no-hedging region becomes smaller, so the dashed curves approach the solid ones; when the bid-ask spread
widens, the no-hedging region becomes larger, so the dashed curves approach the dotted ones.

Other than the quote and reserve price curves, the optimal CEPL plots in Fig. 8 are also of interest,
which are obtained from formula (19). Since there is a one-to-one relationship between the optimal trading
size m1 and the trading edge p1− f1(n1, n2) by way of the quote price curve, the horizontal axis of the left
panel can be mapped into the one of the right panel. The two panels in the figure seem to provide different
conclusions, as the left one says that the optimal CEPL for the no hedging case is the highest, whereas the
right one says the opposite, i.e., static hedging with zero bid-ask spread case is the best. The apparent
contradiction is the result of comparing apples with oranges, as the two horizontal axes represent different
quantities. For a fixed trading size (left panel), the optimal CEPL for the no hedging case is the best
simply because it requires the larges price concession in order for the trade to occur. It is intuitive that at
a given trading price, static hedging with zero bid-ask spread gives the best optimal CEPL, otherwise you
would have chosen not to do static hedging.

Another interesting quantity to know is the optimal hedging size γm2 for the T2 bond, which is plotted
in Fig. 9. The curves in the left panel have negative slopes, which mean buying the T1 bond requires the
selling of the T2 bond to hedge, and vice versa. The right panel says the same thing, since by convention,
a negative trading edge is associated with buying, and a positive edge is for selling. This is obvious, but
it explains why the trading size under static hedging is much bigger than that of no hedging, because you
are essentially trading a spread in the former case. It is known to real life traders that spreads are usually
traded with much bigger sizes. Note that as long as the trading size for the T1 bond is given (left panel),
the optimal hedging size for the T2 bond does not depend on the trading price of the T1 bond due to the
memoryless property of the exponential utility function, but it does depend on the hedging price of the T2

bond. The key point is that for a given hedging price, without any guesswork, the system automatically
produces the optimal hedge ratio.

The opposite scenario of making trading decisions on the T2 bond while static hedging with the T1

bond can be investigated analogously. This will be left as an excise for the readers.

XIII. Conclusion

In this simple trading game, almost all quantities of interest have simple analytical expressions, which
allow you to have a hands-on experience. But for more complicated incomplete market models, usually
no analytical formulas are available. For example, in diffusion type of models, the fair value f and the
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Figure 8: The dimensionless optimal CEPL γΥo is plotted against the dimensionless trading size γm1 (left
panel), and against the trading edge p1 − f1(n1, n2) (right panel). The dotted curve is for no hedging; the
solid one is for static hedging with zero bid-ask spread; the dashed one is for static hedging with finite
bid-ask spread.
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Figure 9: The dimensionless optimal hedging size γm2 for the T2 bond is plotted against the dimensionless
trading size γm1 (left panel), and against the trading edge p1− f1(n1, n2) (right panel). The solid curve is
for static hedging with zero bid-ask spread; the dashed one is for static hedging with finite bid-ask spread.
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portfolio indifference price h, which are needed to compute quote and reserve price curves, satisfy a pair
of PDEs [1, 4]. This pair of PDEs needs to be solved numerically in general, as the one for h is nonlinear.
Despite that the way to compute f and h may vary based on different incomplete market models, the basic
concepts and qualitative features described in this tutorial remain valid. If you go behind the analytical
expressions in this tutorial to think about their financial meanings, you will discover that many conclusions
presented here are a natural consequence of risk aversion in incomplete markets.

Other than various derivative pricing concepts and their usages in incomplete markets, the main points
covered in this tutorial are:

• derivatives should be priced in the context of portfolio optimization;

• derivatives pricing is preference and position dependent in incomplete markets, which is only mean-
ingful from the personal perspective;

• the position dependent pricing offers a natural and systematic way to trade derivatives;

• derivatives trading in incomplete markets is mutually beneficial.
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